Package: GRelevance 1.0

GRelevance: Graph-Based k-Sample Comparisons and Relevance Analysis in High Dimensions

We propose two distribution-free test statistics based on between-sample edge counts and measure the degree of relevance by standardized counts. Users can set edge costs in the graph to compare the parameters of the distributions. Methods for comparing distributions are as described in: Xiaoping Shi (2021) <arxiv:2107.00728>.

Authors:Xiaoping Shi [aut, cre]

GRelevance_1.0.tar.gz
GRelevance_1.0.zip(r-4.5)GRelevance_1.0.zip(r-4.4)GRelevance_1.0.zip(r-4.3)
GRelevance_1.0.tgz(r-4.4-any)GRelevance_1.0.tgz(r-4.3-any)
GRelevance_1.0.tar.gz(r-4.5-noble)GRelevance_1.0.tar.gz(r-4.4-noble)
GRelevance_1.0.tgz(r-4.4-emscripten)GRelevance_1.0.tgz(r-4.3-emscripten)
GRelevance.pdf |GRelevance.html
GRelevance/json (API)

# Install 'GRelevance' in R:
install.packages('GRelevance', repos = c('https://xshi1.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 186 downloads 6 exports 6 dependencies

Last updated 2 years agofrom:9f1a4df7cd. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 16 2024
R-4.5-winOKNov 16 2024
R-4.5-linuxOKNov 16 2024
R-4.4-winOKNov 16 2024
R-4.4-macOKNov 16 2024
R-4.3-winOKNov 16 2024
R-4.3-macOKNov 16 2024

Exports:compbypathHpathMpermutpath.kruskalWeightWpermut

Dependencies:KernSmoothMASSmvtnormphilentropypoormanRcpp